Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Σχετικά έγγραφα
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Chapter 3: Vector Analysis

Homework 8 Model Solution Section

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Spherical Coordinates

INSTRUCTOR S GUIDE ELECTROMAGNETICS FOR E NGINEERS FAWWAZ T. ULABY. Upper Saddle River, New Jersey 07458

Answer sheet: Third Midterm for Math 2339

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

CURVILINEAR COORDINATES

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Areas and Lengths in Polar Coordinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Solutions to Exercise Sheet 5

Notes 6 Coordinate Systems

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Parametrized Surfaces

PARTIAL NOTES for 6.1 Trigonometric Identities

3.5 - Boundary Conditions for Potential Flow

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl


Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

11.4 Graphing in Polar Coordinates Polar Symmetries

Solution to Review Problems for Midterm III

Section 8.2 Graphs of Polar Equations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Chapter 7 Transformations of Stress and Strain

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Variational Wavefunction for the Helium Atom

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

If we restrict the domain of y = sin x to [ π 2, π 2

MathCity.org Merging man and maths

Trigonometry 1.TRIGONOMETRIC RATIOS

(As on April 16, 2002 no changes since Dec 24.)

Lecture 26: Circular domains

Differentiation exercise show differential equation

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Reminders: linear functions

CRASH COURSE IN PRECALCULUS

Math221: HW# 1 solutions

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

2 Composition. Invertible Mappings

derivation of the Laplacian from rectangular to spherical coordinates

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Tutorial Note - Week 09 - Solution

Double Integrals, Iterated Integrals, Cross-sections

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

CYLINDRICAL & SPHERICAL COORDINATES

Example 1: THE ELECTRIC DIPOLE

EE512: Error Control Coding

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Strain gauge and rosettes

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

For a wave characterized by the electric field

D Alembert s Solution to the Wave Equation

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

Chapter 2. Stress, Principal Stresses, Strain Energy

Graded Refractive-Index

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Tutorial problem set 6,

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SECTIONS and 14.12

Geodesic Equations for the Wormhole Metric

Inverse trigonometric functions & General Solution of Trigonometric Equations

1 String with massive end-points

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Chapter 6 BLM Answers

ECE 468: Digital Image Processing. Lecture 8

Numerical Analysis FMN011

Trigonometric Formula Sheet

New bounds for spherical two-distance sets and equiangular lines

SPECIAL FUNCTIONS and POLYNOMIALS

Example Sheet 3 Solutions

w o = R 1 p. (1) R = p =. = 1

Second Order Partial Differential Equations

1. Consider the three dimensional space with the line element. Determine the surface area of the sphere that corresponds to r = R.

( ) 2 and compare to M.

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Orbital angular momentum and the spherical harmonics

Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Transcript:

Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7

Problem 3.4 Convert the coordinates of the following points from spherical to cylindrical coordinates: a) P = 5,0,0), b) P = 5,0,π), c) P 3 = 3,π/,0). Solution: a) P = r,φ,z) = Rsinθ,φ,Rcosθ) = 5sin0,0,5cos0) b) P = r,φ,z) = 5sin0,π,5cos0) = 0,π,5). c) P 3 = r,φ,z) = 3sin π,0,3cos π ) = 3,0,0). = 0,0,5).

Problem 3.7 A section of a sphere is described by 0 R, 0 θ 90, and 30 φ 90. Find: a) the surface area of the spherical section, b) the enclosed volume. Also sketch the outline of the section. Solution: z y x φ=30 o Figure P3.7: Outline of section. π/ S = φ=π/6 π/ θ=0 R sinθ dθ dφ R= π = 4 π )[ ] cosθ π/ 0 = 4 π 6 3 = 4π 3 π/ π/ v = R sinθ dr dθ dφ = R3 3 R=0 φ=π/6 π 0 π 6 θ=0 ) [ cosθ π/ 0 ] = 8 π 3 3 = 8π 9 m ), m 3 ).

Problem 3.30 Given vectors A = ˆrcosφ + 3z) ˆφr+ 4sinφ)+ẑr z), B = ˆrsinφ + ẑcosφ, find a) θ AB at,π/,0), b) a unit vector perpendicular to both A and B at,π/3,). Solution: It doesn t matter whether the vectors are evaluated before vector products are calculated, or if the vector products are directly calculated and the general results are evaluated at the specific point in question. a) At,π/,0), A = ˆφ8+ẑ and B = ˆr. From Eq. 3.8), θ AB = cos A B AB ) = cos 0 AB ) = 90. b) At,π/3,), A = ˆr 7 ˆφ4+ 3) and B = ˆr 3+ẑ. Since A B is perpendicular to both A and B, a unit vector perpendicular to both A and B is given by ± A B A B = ± ˆr 4+ 3)) ) ˆφ 7 ) ) ẑ4+ 3)) 3) + 3)) + 7 4 ) +3+ 3) ˆr0.487+ ˆφ0.8+ẑ0.843).

Problem 3.34 Transform the following vectors into cylindrical coordinates and then evaluate them at the indicated points: a) A = ˆxx+y) at P =,,3), b) B = ˆxy x)+ŷx y) at P =,0,), c) C = ˆxy /x + y ) ŷx /x + y )+ẑ4 at P 3 =,,), d) D = ˆRsinθ + ˆθcosθ + ˆφcos φ at P 4,π/,π/4), e) E = ˆRcosφ + ˆθsinφ + ˆφsin θ at P 5 = 3,π/,π). Solution: From Table 3-: a) b) A = ˆrcosφ ˆφsinφ)r cosφ + r sinφ) = ˆrr cosφcosφ + sinφ) ˆφr sinφcosφ + sinφ), P = +,tan /),3) = 5,63.4,3), AP ) = ˆr0.447 ˆφ0.894) 5.447+.894) = ˆr.34 ˆφ.68. B = ˆrcosφ ˆφsinφ)r sinφ r cosφ)+ˆφcosφ + ˆrsinφ)r cosφ r sinφ) = ˆrrsinφ cosφ )+ ˆφrcos φ sin φ) = ˆrrsinφ )+ ˆφr cosφ, P = + 0,tan 0/),) =,0,), BP ) = ˆr+ ˆφ. c) d) C = ˆrcosφ ˆφsinφ) r sin φ ˆφcosφ + ˆrsinφ) r cos φ + ẑ4 r = ˆrsinφ cosφsinφ cosφ) ˆφsin 3 φ + cos 3 φ)+ẑ4, P 3 = + ),tan /),) =, 45,), CP 3 ) = ˆr0.707+ẑ4. D = ˆrsinθ + ẑcosθ)sinθ +ˆrcosθ ẑsinθ)cosθ + ˆφcos φ = ˆr+ ˆφcos φ, P 4 = sinπ/),π/4,cosπ/)) =,45,0), DP 4 ) = ˆr+ ˆφ. r

e) E = ˆrsinθ + ẑcosθ)cosφ +ˆrcosθ ẑsinθ)sinφ + ˆφsin θ, P 5 = 3, π ),π, EP 5 ) = ˆrsin π + ẑcos π ) cosπ + ˆrcos π ẑsin π ) sinπ + ˆφsin π = ˆr+ ˆφ.

Problem 3.36 Find the gradient of the following scalar functions: a) T = 3/x + z ), b) V = xy z 4, c) U = zcosφ/+r ), d) W = e R sinθ, e) S = 4x e z + y 3, f) N = r cos φ, g) M = Rcosθ sinφ. Solution: a) From Eq. 3.7), b) From Eq. 3.7), c) From Eq. 3.8), d) From Eq. 3.83), e) From Eq. 3.7), f) From Eq. 3.8), 6x T = ˆx x + z ) ẑ 6z x + z ). V = ˆxy z 4 + ŷxyz 4 + ẑ4xy z 3. U = ˆr rzcosφ zsinφ ˆφ +r ) r+r ) + ẑ cosφ +r. W = ˆRe R sinθ + ˆθe R /R)cosθ. S = 4x e z + y 3, S = ˆx S x + ŷ S y + ẑ S z = ˆx8xe z + ŷ3y ẑ4x e z. N = r cos φ, N = ˆr N r + ˆφ N r φ + ẑ N z = ˆrr cos φ ˆφr sinφ cosφ. g) From Eq. 3.83), M = Rcosθ sinφ, M M = ˆR R + ˆθ M R θ + ˆφ Rsinθ M φ = ˆRcosθ sinφ ˆθsinθ sinφ + ˆφ cosφ tanθ.

Problem 3.40 For the scalar function V = xy z, determine its directional derivative along the direction of vector A = ˆx ŷz) and then evaluate it at P =,,4). Solution: The directional derivative is given by Eq. 3.75) as dv/dl = V â l, where the unit vector in the direction of A is given by Eq. 3.): â l = ˆx ŷz +z, and the gradient of V in Cartesian coordinates is given by Eq. 3.7): V = ˆxy + ŷxy ẑz. Therefore, by Eq. 3.75), At P =,,4), dv dv dl dl ),,4) = y xyz +z. = 9 7 =.8.

Problem 3.47 For the vector field E = ˆr0e r ẑ3z, verify the divergence theorem for the cylindrical region enclosed by r =, z = 0, and z = 4. Solution: E ds = + + = 0+ π r=0 φ=0 π 4 φ=0 z=0 π r=0 φ=0 π 4 φ=0 ˆr0e r ẑ3z) ẑr dr dφ) ) z=0 z=0 ˆr0e r ẑ3z) ˆrr dφ dz) ) r= ˆr0e r ẑ3z) ẑr dr dφ) ) z=4 π 0e dφ dz+ r dr dφ r=0 φ=0 = 60πe 48π 8.77, 4 π 0e r ) r) E dv = 3 r dφ dr dz z=0 r=0 φ=0 r = 8π 0e r r) 3r) dr r=0 ) = 8π 0e r + 0e r +r) 3r r=0 = 60πe 48π 8.77.

Problem 3.5 Verify Stokes s theorem for the vector field B = ˆrr cosφ + ˆφsinφ) by evaluating: a) B dl over the semicircular contour shown in Fig. P3.5a), and C b) B) ds over the surface of the semicircle. S y y L - L 3 0 L a) x 0 L3 L L 4 L b) x Figure P3.5: Contour paths for a) Problem 3.5 and b) Problem 3.53. Solution: a) B dl = B dl+ B dl+ B dl, L L L 3 B dl = ˆrr cosφ + ˆφsinφ) ˆr dr+ ˆφr dφ + ẑ dz) = r cosφ dr+ r sinφ dφ, 0 B dl = r cosφ dr) + r sinφ dφ) L r=0 φ=0, z=0 φ=0 z=0 = r) r=0 + 0 =, π B dl = r cosφ dr) + r sinφ dφ) L r= z=0 φ=0 r=, z=0 = 0+ cosφ) π φ=0 = 4, 0 π B dl = r cosφ dr) + r sinφ dφ) L 3 r= φ=π,z=0 φ=π z=0 = r) 0 r= + 0 =, B dl = +4+ = 8.

b) B = ˆrr cosφ + ˆφsinφ) = ˆr r φ 0 ) z sinφ) π B ds = + ˆφ z r cosφ) ) r 0 ) + ẑ r r rsinφ)) r cosφ) φ = ˆr0+ ˆφ0+ẑ r sinφ +r sinφ)) = ẑsinφ = φ=0 r=0 π φ=0 r=0 ẑsinφ + )) ẑr dr dφ) r sinφr+ ) dr dφ = + r ), cosφ r + r) ) r=0 ) π φ=0 = 8.

Problem 3.58 a) V = 0r 3 sinφ b) V = /R )cosθ sinφ Solution: a) Find the Laplacian of the following scalar functions: V = r r V r r ) + V r φ + V z )+ r r r 0r3 sinφ) = r r φ 0r3 sinφ)+0 = r r 30r3 sinφ) r 0r3 )4sinφ = 90r sinφ 40r sinφ = 50r sinφ. b) V = R R V ) + R R R sinθ V ) + sinθ θ θ = R R )) cosθ sinφ R R R + R sinθ )) cosθ sinφ sinθ θ θ R ) + R sin θ φ cosθ sinφ R = 4 R 4 cosθ sinφ 4 R 4 cosθ sinφ cosθ R 4 sin θ sinφ = cosθ sinφ R 4 sin. θ R sin θ V φ